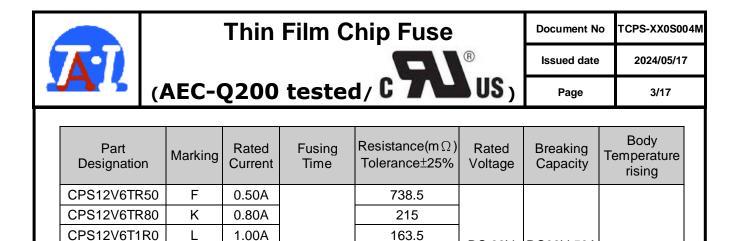



4. Dimensions


Туре	Dimensions (mm)							
(Inch Size code)	L	W	С	d	t			
CPS06 (0603)	1.6±0.1	0.80±0.10	0.3±0.2	0.35±0.2	0.45±0.10			
CPS12 (1206)	3.1±0.1	1.55±0.10	0.5±0.3	0.50±0.2	0.60±0.10			

Unit: mm

5. Applications and ratings

Part Designation	Marking	Rated Current	Fusing Time	Resistance(m Ω) Tolerance±25%	Rated Voltage	Breaking Capacity	Body Temperature rising
CPS06V5TR50	F	0.50A		264	DC 50V	DC50V 50A	
CPS06V3TR63		0.63A		200			
CPS06V3TR80	K	0.80A		143			
CPS06V3T1R0	L	1.00A		83			<75℃ at 100% rated
CPS06V3T1R25	M	1.25A		54			
CPS06V3T1R50	Р	1.50A	Open within	42		D0001/	
CPS06V3T1R60	Ν	1.60A	1~120sec. at 200%	40			
CPS06V3T2R0	S	2.00A	rated	28	DC 32V	DC32V 50A	
CPS06V3T2R50	Т	2.50A	current	21.5		30A	current
CPS06V3T3R00	3	3.00A		18			
CPS06V3T3R15	U	3.15A		16			
CPS06V3T4R0	W	4.00A		13			
CPS06V3T5R0	Y	5.00A		9.5			
CPS06V3T6R0	<u>6</u>	6.00A		6			

*Resistance valve was measured with less than 10% of rated current

100

68.5

48.5

35

27

14

11

7.5

DC 63V

DC 32V

DC63V 50A

DC32V 50A

<75℃ at

100% rated

current

*Resistance valve was measured with less than 10% of rated current

Open within

1~120sec.

at 200%

rated

current

6 Temperature Derating Curve

CPS12V6T1R25

CPS12V6T1R50

CPS12V6T2R0

CPS12V3T2R50

CPS12V3T3R00

CPS12V3T4R0

CPS12V3T5R0

CPS12V3T7R0

6.1 Normal Ambient Temperature: 25°C

Μ

Ρ

S

Т

3

W

Y

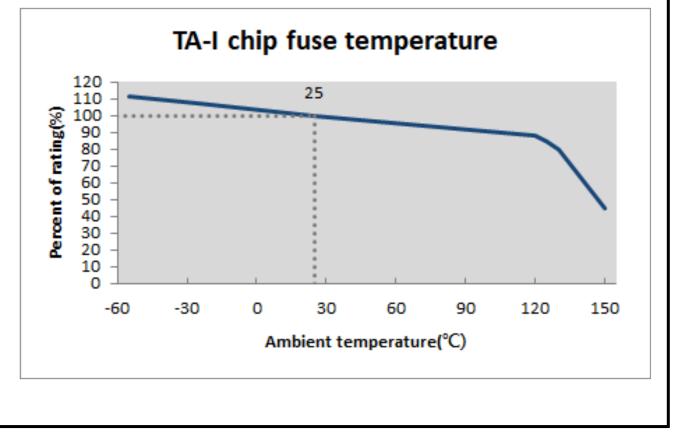
Ζ

1.25A

1.50A

2.00A

2.50A


3.00A

4.00A

5.00A

7.00A

6.2 Operating Temperature: $-55^{\circ}C \sim 150^{\circ}C$, with proper derating factor as below:

Thin Film Chip Fuse

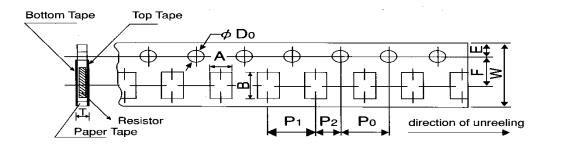
TCPS-XX0S004M **Document No**

(AEC-Q200 tested/ CRUS)

Issued date 2024/05/17 Page

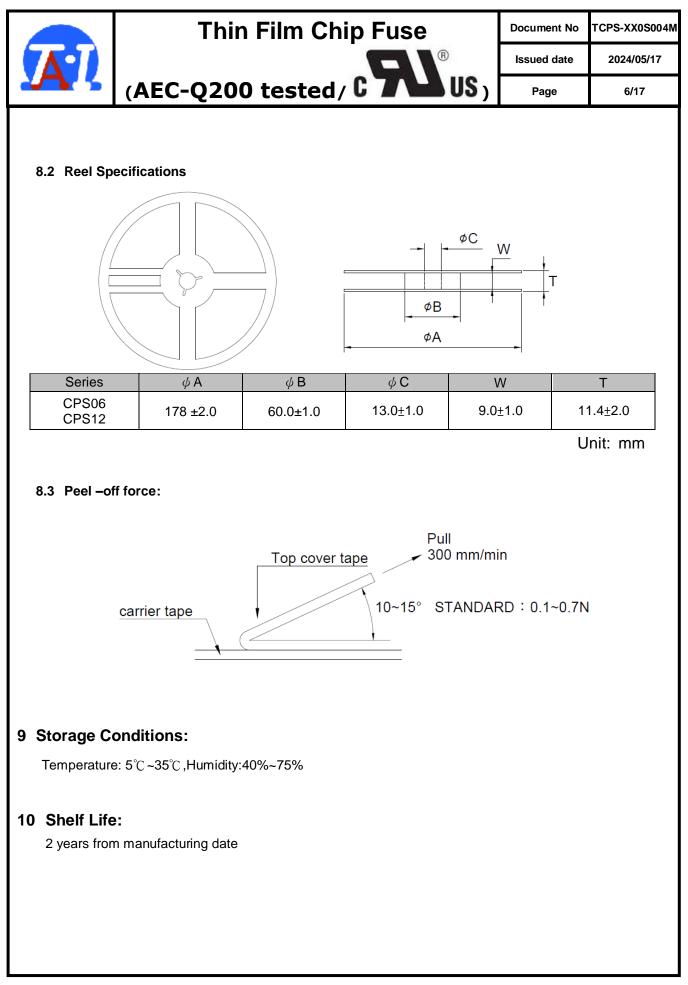
4/17

7 Reliability Tests

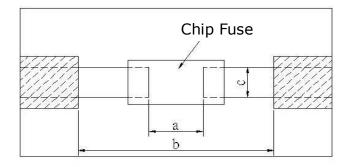

No.	Parameter	Reference Standard	Test Method	Requirement
#1	Solderability	J-STD-002,	Aging 4 hours at 155 °C dry heat Lead-free solder bath at (1) Method B1: $245 \pm 5^{\circ}$ C solder, 5 ± 0.5 sec dwell. (2) Method D: $260 \pm 5^{\circ}$ C solder, 30 ± 0.5 sec dwell.	95% coverage minimum
#2	Resistance to solder Heat	MIL-STD-202 Method 210	Condition K: 250±5℃ solder, 30±5 sec dwell.Time above 217℃, 60~150 sec.	±10%
#3	Mechanical Shock	MIL-STD-202, Method 213,	Wave Form: Tolerance for half sine shock pulse. Peak value is 100g's. Normal duration(D) is 6(ms)	±10%
#4	Vibration	MIL-STD-202, Method 204	5 g's for 20 min., 12 cycles each of 3 orientations. (Note: Test from 10-2000 Hz.)	±10%
#5	Terminal Strength	AEC-Q200-006	Force of 1.8kg for 1206/0603 Force of 1.0kg for 0402	±10%
#6	High Temperature Storage	MIL-STD-202, Method 108	With exemptions 1000 hrs. @ T=150°C. Unpowered.	±20%
#7	Temperature Cycling	JESD22-A-104	1000 Cycles (-40°C to +125°C), 30min maximum dwell time at each temperature extreme. Measurement at 24±4 hours after test conclusion.	±10%
#8	Humidity Bias	MIL-STD-202, Method 103	1000 hours 85°C/85%RH. Note: Specified conditions: 10% of operating current. Measurement at 24±2 hours after test conclusion.	±10%
#9	Operational Life	MIL-STD-202 Method 108	1000 hours TA=85°C at 70% rated current. Measurement at 24±2 hours after test conclusion	±10%
#10	Resistance to Solvent	MIL-STD-202 Method 215	a:Isopropyl Alcohol : Mineral Spirits= 1 : 3 b:Terpene Defluxer c:Deionized water : Propylene Glycol : Monomethyl Ether : monoethanolamine = 42 : 1 : 1	No evident damages on protective coating
#11	Board Flex (Bending)	AEC-Q200-005	3mm deflection	±10%
#12	Carrying capacity	UL248-14	Rated current ,4hr	±10%
#13	Fusing Time	UL248-14	200% of its rated current	1~120 sec
#14	Interrupting Ability	UL248-14	After the fuse is interrupted, rated voltage applied for 30sec again	No mechanical damages
#15	Temperature Rise	UL248-14	100% of its rated current, Measure of surface temperature	ΔT<75℃
#16	Residual Resistance	UL248-14	Measure DC resistance after fusing	$10k\Omega$ and more
#17	Low Temperature Storage	JESD22-A119	1000 hrs. @ T=-55°C. Unpowered. Measurement at 24±2 hours after test conclusion.	±10%
#18	High Temperature Operating Life	MIL-STD-202 Method 108	1,000 hours, 150°C.Biased at the derated nominal 45% of fuse current rating. Measurement at 24±2 hours after test conclusion.	±20%
#19	Flammability	UL-94	V-0 or V-1 are acceptable. Electrical test not required.	V-0 or V-1
#20	External Visual	MIL-STD-883 Method 2009	Inspect device construction, marking and workmanship. Pre and Post Electrical Test not required	
#21	Physical Dimensions	JESD22-B100	Verify physical dimensions to the applicable component specification.Pre and Post Electrical Test not required.	

8 Taping & Reel

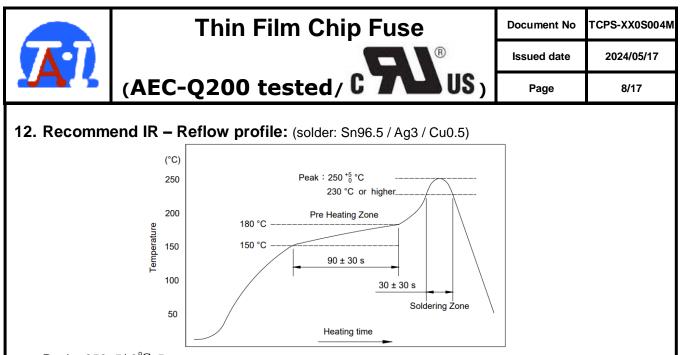
8.1 Taping Dimensions


4mm pitch paper

Packing	Туре	А	В	W	F	E	P ₁	P ₂	P ₀	D ₀	Т
Paper Tape	CPS06	1.1±0.1	1.9±0.1	8.0±0.2	3.5±0.05	1.75±0.1	4.0±0.1	2.0±0.05	4.0±0.1	+0.1 φ 1.5 -0	0.64 <u>±</u> 0.1
	CPS12	2.0±0.15	3.6±0.2	8.0±0.2	3.5±0.05	1.75±0.1	4.0±0.1	2.0±0.05	4.0±0.1	+0.1 φ 1.5 -0	0.84 <u>±</u> 0.1


Unit: mm

Type series		Paper Tape
		4 mm pitch
		180mm/R
CPS	06	5000
CPS	12	5000



11 Recommended land patterns

\sum	Land pattern	Dimension					
Туре	Size	а	b	с			
CPS	06 (0603)	0.85~0.95	2.00~2.20	1.50~1.70			
CPS	12 (1206)	0.95~1.05	4.40~5.00	2.30~2.50			

Peak : $250+5/-0^{\circ}C$, 5 sec. Pre-heat Zone : 150 to 180 $^{\circ}C$, 90±30 sec Soldering Zone : $230^{\circ}C$ or higher , 30 ± 10 sec

13. Approval by UL248-14

The fuses have been approved by UL. File No. of UL Recognition is E241710

14. ECN

Engineering Change Notice: The customer will be informed with ECN if there is significant modification on the characteristics and materials described in Approval Sheet.

15. Manufacturing Country & City:

TA-I TECHNOLOGY CO., LTD. (Taiwan- Tao Yuan)

Tel: (+886) 3-3246169 Fax: (+886) 3-3246167

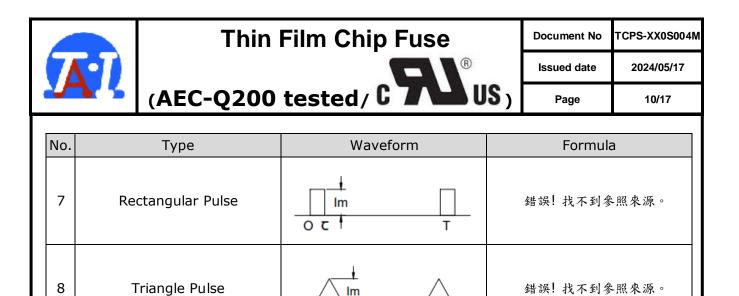
Associated companies:

(1) TA-I TECHNOLOGY (SU ZHOU) CO., LTD. (China – Su Zhou)

Tel: (+86) 512-63457879 Fax: (+86) 512-63457869

- (2) TA-I TECHNOLOGY ELECTRONIC (DONGGUAN) CO., LTD. (China –Dongguan) Tel: (+86) 769-8339-4790~3 Fax: (+86) 769-8339-4794
- (3) FORTUNE TASK ENTERPRISES LIMITED (China Dongguan) Tel: (+86) 769-8339-4790~3 Fax: (+86) 769-8339-4794
- (4) TAI OHM ELECTRONICS (M) SDN. BHD. (Malaysia Penang) Tel: (+60) 4- 3900480 Fax: (+60) 4-3901481

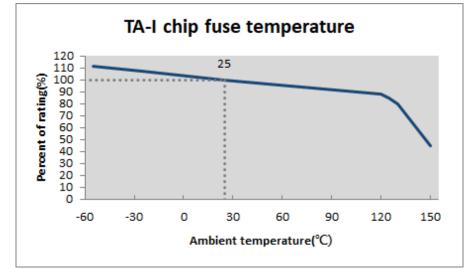
	Thin Film Chip Fuse	Document No	TCPS-XX0S004M				
	B	Issued date	2024/05/17				
	(AEC-Q200 tested/ C The US)	Page	9/17				
16. Selection Guideline of Fuse:							
■ Check	list of selection factors						
⊚Norr	nal operating current						
⊘Ambient Temperature							
\odot Overload current and length of time in which the fuse must open .							


⊙Type of fuse (SMD or Tube) and physical size limitation (0603 or 1206)

⊙Agency Approval required (e.g., UL248-14)

Normal operating current

e.g., Rectangular Wave, If I p = 1.5 A, Normal operating current = 1.5 A


No.	Туре	Waveform	Formula
1	Sinusoidal Waveform		錯誤! 找不到參照來源。
2	All Wave Rectification		錯誤! 找不到參照來源。
3	Half Wave		錯誤! 找不到參照來源。
4	Triangle Waveform		錯誤! 找不到參照來源。
5	Rectangular Waveform		錯誤! 找不到參照來源。
6	Trapezoidal Waveform		錯誤! 找不到參照來源。
		I	

τf

- Derating ratio for different ambient Temperature
 - ◎ Referring to bottom figure and select the appropriate derating ratio:
 - e.g., Ambient temperature is 60 degree C

the derating ratio ≒ 0.90

- Calculating the required rating of fuse needed.
 - ◎ Safety coefficient: 70% is safety coefficient from practical experience

```
\bigcirc \frac{Normal \, Operating \, Current}{0.7 \, \times derating \, ratio} < \text{ rating current of fuse}
```

Condition: Normal operating current =1.5 A Ambient temperature 40 $^{\circ}C$: Derating ratio = 0.95

	Th	in Fi	ilm (Chip Fuse		Document	No TC	PS-XX0S00
57					®	Issued da	ate	2024/05/17
	C-Q2	00 t	este	d/C	US)	Page		11/17
1.5		urrent of						
2.255 < 1	ating cu	rrent of f	use					
 Determination e.g. Condition: Calculating value Normal operation 	alue =2.2	255 A , 2.	255A <	rating current of fus	e			
Following bott	om inde	x-table: s	suggesti	ing use CPS06V3T2	2R50.			
Part Designation	Marking	Rated Current	Rated Voltage	Part Designation	Marking	Rated Current	Rated Voltage	•
CPS06V5TR50	F	0.5A	50V	CPS12V6TR50	F	0.50A	63V	
CPS06V3TR63	Ι	0.63A	32V	CPS12V6TR80	К	0.80A	63V	
CPS06V3TR80	К	0.80A	32V	CPS12V6T1R0	L	1.00A	63V	
CPS06V3T1R0	L	1.00A	32V	CPS12V6T1R25	M	1.25A	63V	
CPS06V3T1R25	M	1.25A	32V	CPS12V6T1R50	Р	1.50A	63V	
CPS06V3T1R50	Р	1.50A	32V	CPS12V6T2R0	S	2.00A	63V	
CPS06V3T1R60	Ν	1.60A	32V	CPS12V3T2R50	Т	2.50A	32V	
CPS06V3T2R0	S	2.00A	32V	CPS12V3T3R00	3	3.00A	32V	
CPS06V3T2R50	Т	2.50A	32V	CPS12V3T4R0	W	4.00A	32V	
CPS06V3T3R00	3	3.00A	32V	CPS12V3T5R0	Y	5.00A	32V	
CPS06V3T3R15	U	3.15A	32V	CPS12V3T7R0	Z	7.00A	32V	
CPS06V3T4R0	W	4.00A	32V					
CPS06V3T5R0	Y	5.00A	32V					
CPS06V3T6R0	<u>6</u>	6.00A	32V					

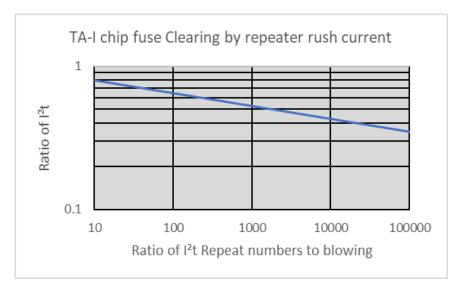
Inrush current:

- ◆ Considering inrush waveform & calculate I²t (A²s) value
- ◆ Choosing fuse's l²t (A²s) value > calculate l²t (A²s) value
- ◆ Considering Ratio of I²t repeat numbers to blowing .
- ♦ Confirm with us.

e.g., choosing 0603 Fuse

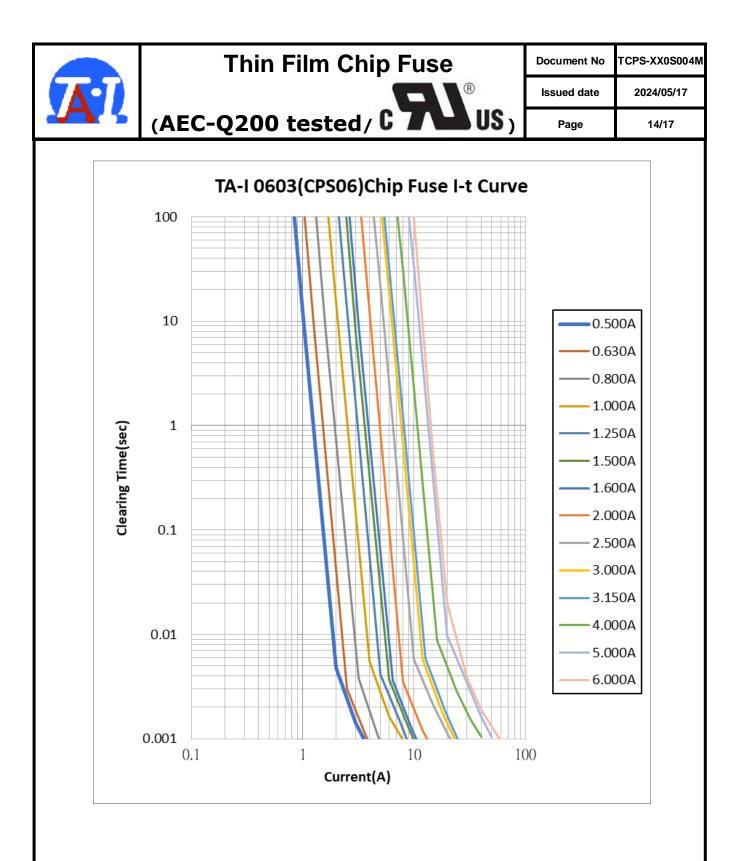
Condition:

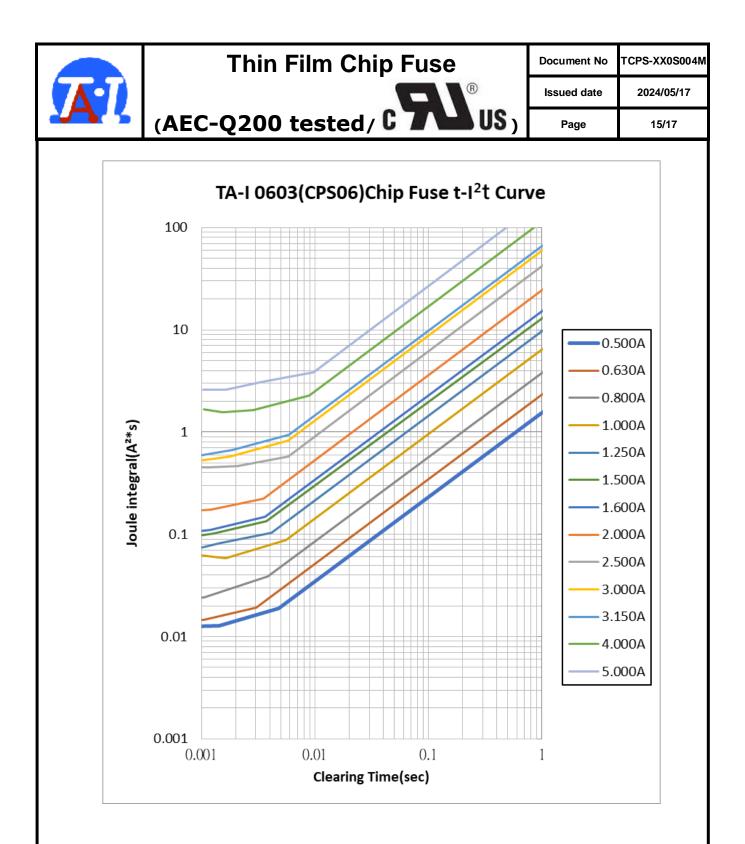
- 1. Rectangular Wave, Ip = 4 A, t = 1 ms , calculate Ip²t = $4^2 x 1 x 10^{-3} = 0.016 (A^2s)$
- 2. Choosing CPS06V3T1R25, I²t = 0.056 (A²s) \rightarrow Page 12 index-table
- 3. Inrush shock : 100,000 times (=0.35) \rightarrow inrush ratio

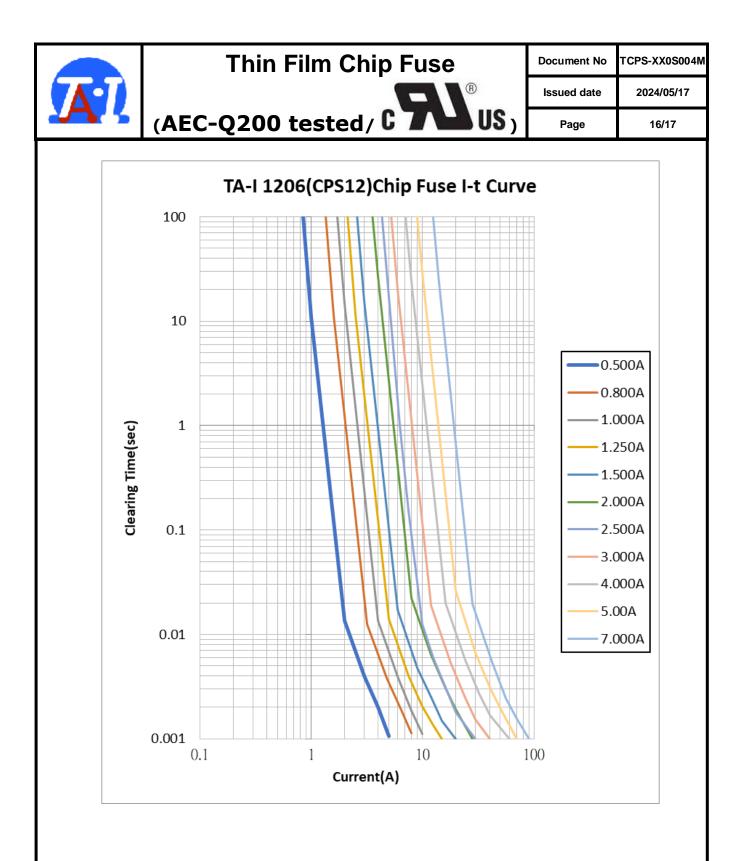

Thin Film Chip Fuse

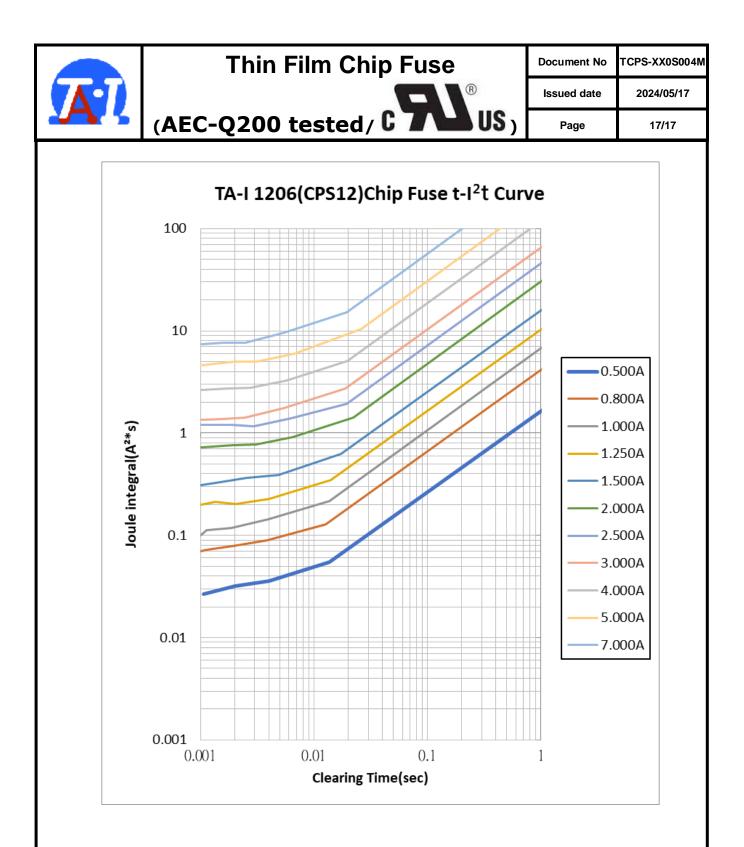
(AEC-Q200 tested/ C7LUS)

- 4. Choosing fuse's I²t (A²s) value X Derating ratio (inrush 100000 times) > calculate I²t (A²s) value
- 5. $0.056 \times 0.35 = 0.0196$ (A²s) > 0.016 \rightarrow CPS06V3T1R25 is able to meet circuit's application


TA-I FUSE I ² t (A ² s)							
Part Number	Typical I ² t (A ² s)	Part Number	Typical I ² t (A ² s)				
CPS06V5TR50	0.009	CPS12V6TR50	0.027				
CPS06V3TR63	0.014	CPS12V6TR80	0.072				
CPS06V3TR80	0.023	CPS12V6T1R0	0.134				
CPS06V3T1R0	0.036	CPS12V6T1R25	0.233				
CPS06V3T1R25	0.056	CPS12V6T1R50	0.305				
CPS06V3T1R50	0.081	CPS12V6T2R0	0.509				
CPS06V3T1R60	0.092	CPS12V3T2R50	0.777				
CPS06V3T2R0	0.145	CPS12V3T3R00	1.285				
CPS06V3T2R50	0.229	CPS12V3T4R0	2.374				
CPS06V3T3R00	0.332	CPS12V3T5R0	5.510				
CPS06V3T3R15	0.365	CPS12V3T7R0	10.170				
CPS06V3T4R0	0.574						
CPS06V3T5R0	0.927						
CPS06V3T6R0	1.860						


Note*: Typical I²t value is measured at 10x-rated current, application with surge over 10x-rated current. Please confirm with us.




		Thin	Film Chip Fuse		Document No	TCPS-XX0S004M
	-7		B		Issued date	2024/05/17
2	X 5	(AEC-Q200	tested/CNUS	5)	Page	13/17
No.		Туре	Waveform		Formul	a
1	Sinusoidal Waveform (1 Cycle)		$\frac{1}{0}$		$\frac{1}{2}{I_m}^2t$	
2	Sinusoidal Waveform (1/2 Cycle)			$\frac{1}{2}{I_m}^2t$		
3	Triangle Waveform			$\frac{1}{3}{I_m}^2t$		
4	Rectangular Waveform			$I_m^2 t$		
5	Trape	zoidal Waveform	O t ₁ t ₂ t ₃ 1	$\frac{1}{3}I_m^2 t + I_m^2(t_1 - t_2) + \frac{1}{3}I_m^2(t_2 - t_3)$		
6	Vario	ous Waveform 1			$I_1I_2t + \frac{1}{3}(I_1 -$	$(I_2)^2 t$
7	Various Waveform 2		0 ti ti ti ti		$\frac{1}{t} + \left[I_1I_2t + \frac{(I_1I_2t)}{(I_1I_2t)} + \frac{1}{3}(I_2)\right]$	
8	Cha	rge/Discharge Waveform	$0.368 \text{Im} \qquad i(t)=\text{Ime}^{-tc}$ $0.368 \text{Im} \qquad t$	$\frac{1}{2}(I_m^2\tau)$)
9	Lig	ghtning Surge Waveform	$0.5 \lim_{t_1} \frac{1}{t_2}$	$I_m^2 \left[\frac{t_1}{3} + 0.721(t_2 - t_1) \right]$		$(t_2 - t_1)$

TA-I TECHNOLOGY CO., LTD

