

1. Scope

This specification applied to the products of Lead-Free current sensing resistor of metal foil for Lead-Free RLM series manufactured by TA-I TECHNOLOGY CO., LTD.

2. Type Designation

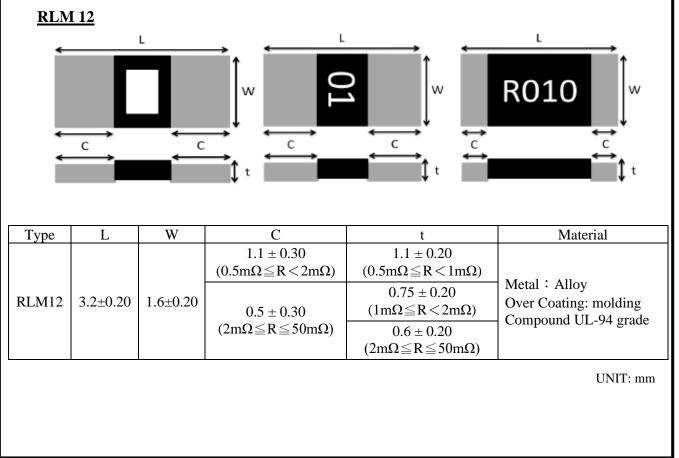
TA-I TECHNOLOGY CO., LTD

Document No	TRLM-XX0S001A
Issued date	2022/12/15
page	2/14

<u>Marking</u>

For RLM10

(1) If R=1&1.5, the marking pattern is a white rectangle.



(2) If $2 \leq R \leq 25$, the marking pattern is as follows.

Resistance value is expressed by 3 digits. E.G.: $002 = 0.002\Omega = 2m\Omega$ $010 = 0.010\Omega = 10m\Omega$

*Note: If the marking pattern has underline, it is indicated as a MnCu material.

TA-I TECHNOLOGY CO., LTD

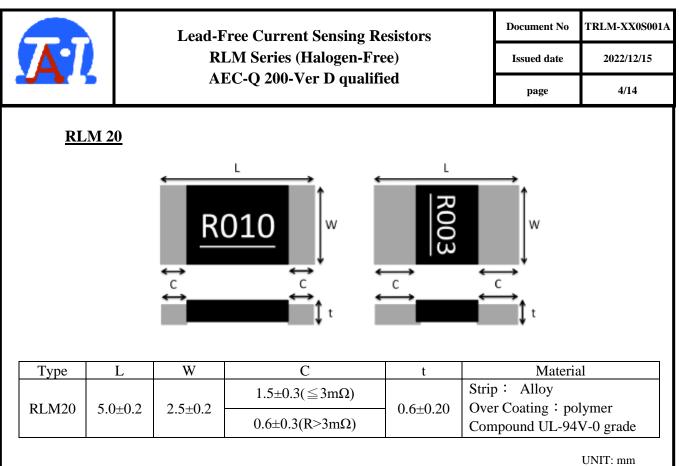
Document No	TRLM-XX0S001A
Issued date	2022/12/15
page	3/14

<u>Marking</u>

For RLM12

(1) If $0.5m\Omega \leq R < 1m\Omega$, the marking pattern is a white rectangle.

(2) If $1m\Omega \leq R < 2m\Omega$, the marking pattern is as follows


Resistance value is expressed by 2 digits. E.G.: $01 = 0.001\Omega = 1m\Omega$

(3) If $2m\Omega \leq R \leq 50m\Omega$, the marking pattern is as follows

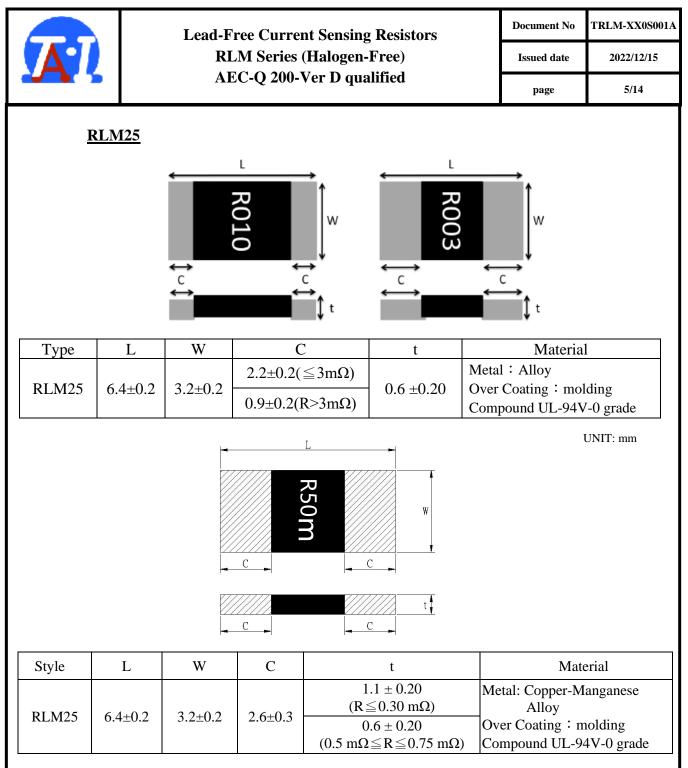
Resistance value is expressed by 4 digits. E.G.: $R002=0.002\Omega=2m\Omega$ $R010=0.010\Omega=10m\Omega$

*Note: If the marking pattern has underline, it is indicated as a MnCu material

<u>Marking</u>

For RLM20

(1) If $R \leq 3m\Omega$, the marking pattern is as follows


Resistance value is expressed by 4 digits. E.G.: $R003 = 0.003\Omega = 3m\Omega$

(2) If $R>3m\Omega$, the marking pattern is as follows

Resistance value is expressed by 4 digits. E.G.: $R005=0.005\Omega=5m\Omega$ $R010=0.010\Omega=10m\Omega$

*Note: If the marking pattern has underline , it is indicated as a MnCu material

UNIT: mm

Document No	TRLM-XX0S001A
Issued date	2022/12/15
page	6/14

<u>Marking</u>

For RLM25

(1) IF R \leq 3m Ω , the marking pattern is as follows

Resistance value is expressed by 4 digits. E.G.: $R003 = 0.003\Omega = 3m\Omega$

(2) IF R>3m Ω , the marking pattern is as follows

Resistance value is expressed by 4 digits. E.G.: $R005=0.005\Omega=5m\Omega$ $R010=0.010\Omega=10m\Omega$

(3) If $0.3m\Omega \leq R \leq 0.75m\Omega$, the marking pattern is as follows

///////		[]///////
	R	
	5	
	0	
///////	m	
///////		///////

Resistance value is expressed by 4 digits. E.G.: R30m= 0.0003Ω = $0.3m\Omega$ R50m = 0.0005Ω = $0.5m\Omega$

*Note: If the marking pattern has underline , it is indicated as a MnCu material

Document No TRLM-XX0S001A

page

Issued date 2022/12/15

7/14

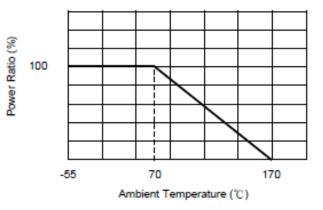
4. Features

RLM10 (MnCu)	*RLM12 (MnCu/NiCu)	RLM20 (NiCu)	RLM20 (MnCu)	RLM25 (MnCu)	RLM25 (MnCu)	RLM25 (NiCu)
0805	1206	21	010	2512		
0.125W 0.25W 0.5W	$V = \begin{bmatrix} (0.25W, 0.5W, 1W, 1.5W) & 0.75W \\ 1mQ \le R \le 50mQ & 1W \end{bmatrix}$		W $1.5W(1m\Omega \le R \le 15m\Omega)$ 2W $(0.5m\Omega \le R \le 10m\Omega)$.5mΩ) .0mΩ)	
1~25mΩ	0.5~50mΩ	2~50mΩ	1~50mΩ	1~50mΩ	0.3 ~0.75mΩ	1~50mΩ
	-55°C~+170°C					
	+50ppm/9C			+50mm/%C	+50mmm/%C	±275 ppm/°C (R≦1mΩ)
±50ppm/°C				_50ppm/-C	130ppm/-C	\pm 50ppm/°C (1m Ω <r<math>\leq50mΩ)</r<math>
$\pm 1\%$ $\times \pm 2\%$ $\times \pm 5\%$						
Over 100MΩ						
$(P*R)^{1/2}$						
	(MnCu) 0805 0.125W 0.25W 0.5W	$\begin{array}{c c} (MnCu) & (MnCu/NiCu) \\ \hline & & (MnCu/NiCu) \\ \hline & & & (MnCu/$	(MnCu) (MnCu/NiCu) (NiCu) 0805 1206 20 0.125W $0.5m\Omega \leq R < 1m\Omega$ 0.5 0.25W $0.5m\Omega \leq R \leq 50m\Omega$ 0.7 $0.5W$ $1m\Omega \leq R \leq 50m\Omega$ 1 $1\sim25m\Omega$ $0.5\sim50m\Omega$ 2 $1\sim25m\Omega$ $0.5\sim50m\Omega$ 2 $\pm50ppm/^{\circ}C$ $\pm50ppm/^{\circ}C$ \pm	(MnCu) (MnCu/NiCu) (NiCu) (MnCu) 0805 1206 $2 \cup U$ 0.125W 0.5mQ ≤ R < 1mQ	(MnCu) (MnCu/NiCu) (NiCu) (MnCu) (MnCu) 0805 1206 2 ··· 2 ··· 1 0.125W 0.5mΩ≤R<1mΩ	(MnCu) (MnCu/NiCu) (NiCu) (MnCu) (MnCu) (MnCu) 0805 1206 $2 \cup 1$ 2512 0.125W $0.5m\Omega \leq R < 1m\Omega$ $0.5W$ $W (R=0.5m\Omega - 50m$ 0.25W $0.5m\Omega \leq R < 1m\Omega$ $0.75W$ $1.5W (1m\Omega \leq R \leq 1)$ $0.25W$ $0.5w(0.5W,1W,1.5W)$ $0.75W$ $1.5W (1m\Omega \leq R \leq 1)$ $0.5W$ $(0.25W,0.5W,1W)$ $1.5W$ $3W(0.5m\Omega \leq R \leq 0.7)$ $1-25m\Omega$ $0.5-50m\Omega$ $2-50m\Omega$ $1-50m\Omega$ $0.3 - 0.75m\Omega$ $1-25m\Omega$ $0.5-50m\Omega$ $2-50m\Omega$ $1-50m\Omega$ $0.3 - 0.75m\Omega$ $\pm 50ppm/^{\circ}C$ $\pm 50ppm/^{\circ}C$ $\pm 50ppm/^{\circ}C$ $\pm 50ppm/^{\circ}C$

Note*:1 Watts with total solder pad and trace size of $300 \mathrm{mm}^2$

5. Reliability Tests

Test Items	Reference	Condition of Test	Test Limits
Temperature Coefficient of Resistance	IEC60115-1 4.8	+25 ~ 125°C	Refer 4.0
High Temperature Exposure (Storage)	AEC-Q200-REV D-Test 3 MIL-STD202 Method 108	T=170°C,1000hrs, Measurement at 24hrs after test conclusion.	< ±1%
Temperature Cycling	AEC-Q200-REV D-Test 4 JESD22 Method JA-104	1000Cycle (-55°C to 125°C) Measurement at 24hrs after test conclusion.	< ±0.5%
Short time overload	IEC60115-1 4.13	5 X rated power for 5s	< ±0.5%
Moisture Resistance	AEC-Q200-REV D-Test 6 MIL-STD-202 Method 106	T=24 hours / Cycle ,10 Cycles. Notes: Steps 7a& 7b not required. Unpowered	< ±1%
Biased Humidity	AEC-Q200-REV D-Test 7 MIL-STD-202 Method 103	10% Rated power at 85°C, RH:85%, 1000Hrs, Measurement at 24hrs after test conclusion.	< ±0.5%
Operation life	AEC-Q200-REV D-Test 8 MIL-STD-202 Method 108	1000 hours TA=125°C at 45% rated power. Measurement at 24±4 hours after test conclusion.	< ±1%
External Visual	AEC-Q200-REV D-Test 9 MIL-STD-883 Method 2009	Electrical test not required. Inspect device construction, marking and workmanship	


Document No TRLM-XX0S001A

page

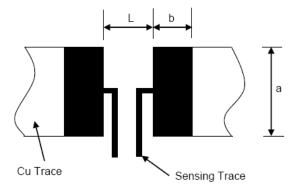
8/14

Physical Dimension	AEC-Q200-REV D-Test 10 JESD22 Method JB-100	Verify physical dimensions to the applicable device detail specification. Note: User(s) and Suppliers spec. Electrical test not required.	
Resistance to Solvents	AEC-Q200-REV D-Test 12 MIL-STD-202 Method 215	 a: Isopropyl Alcohol : Mineral Spirits= 1 : 3 b: Terpene Defluxer (Bioact EC-7R) c: Deionized water : Propylene Glycol Monomethyl Ether : monoethanolamine =42 : 1 : 1 	Marking and protective layer Cannot be detached
Resistance to Soldering Heat	AEC-Q200-REV D-Test 15 MIL-STD-202 Method 210	T=260+/-5°C solder,10+/-1 sec dwell	< ±0.5%
Mechanical Shock	AEC-Q200-REV D-Test 13 MIL-STD-202 Method 213	100g's, Normal duration is 6ms, half sine shock pulse	< ±0.5%
Resistance to vibration	AEC-Q200-REV D-Test 14 MIL-STD-202 Method 204	5g's for 20min.12cycles, 10-2000Hz	<±0.5%
Board Flex	AEC-Q200-REV D-Test 21 AEC-Q200-005	Min 2mm deflection ,60sec.	< ±0.5%
Flammability	AEC-Q200-REV D-Test 20 UL-94	V-0 or V-1are acceptable, Electrical test not required	V-0
Thermal Shock	AEC-Q200-REV D-Test 16 MIL-STD-202 Method 107	-55°C/+155°C. Note: Number of cycles required-300, Maximum transfer time-20 seconds, Dwell time-15 minutes. Air-Air.	< ±1.0%
ESD	AEC-Q200-REV D-Test 17 AEC-Q200-002 or ISO/DIS 10605	verify the voltage setting at 500V	< ±1.0%
Solderability	AEC-Q200-REV D-Test 18 J-STD-002	Method B, aging 4 hours at 155 °C dry heat Lead-free solder bath at 235±3 °C Dipping time: 3±0.5 seconds	> 95% area covered with tin
Terminal Strength (SMD)	AEC-Q200-REV D-Test 22 AEC-Q200-006	Force of 1.8kg for 60 seconds Remarks: 0201-NA	< ±1.0%

5.1 Derating Curve

Document No	TRLM-XX0S001A
Issued date	2022/12/15
page	9/14

5.2 Rated Current


The rated current is calculated by the following formula:

$$I = \sqrt{P \div R}$$

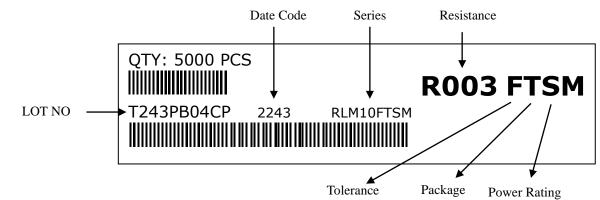
I: Rated Current (A)

- P: Rated Power (W)
- R: Resistance Value (Ω)

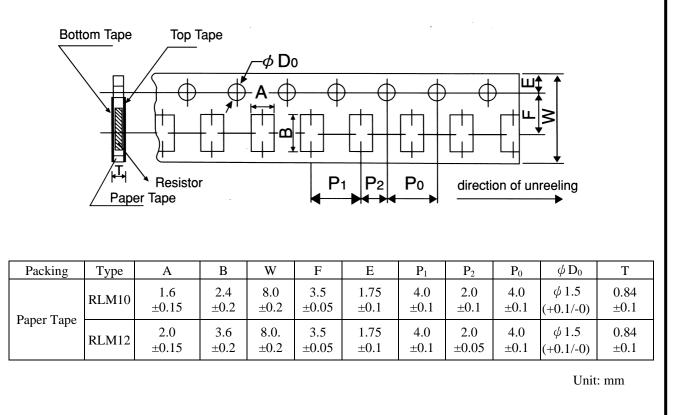
6. Recommended Solder Pad Dimension

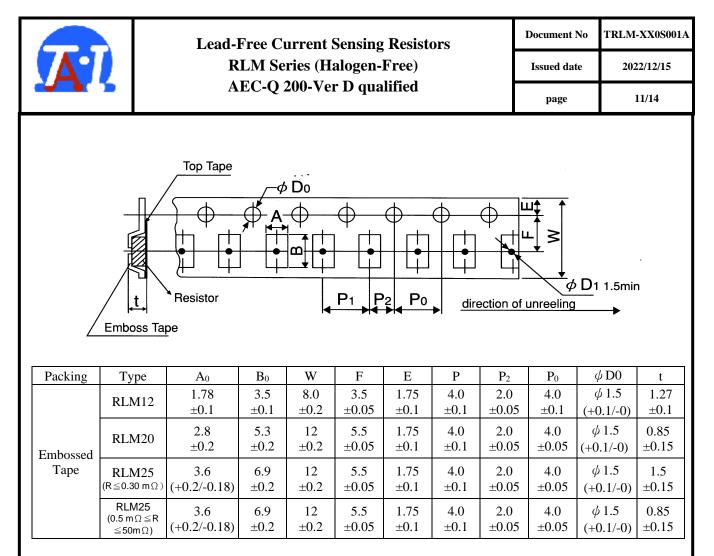
Туре	Resistance Range(m Ω)	a	b	L
DI M10	$1 \leq R < 2$	$1.4{\pm}0.1$	1.15±0.1	0.7±0.1
RLM10	$2 \leq R \leq 25$	$1.4{\pm}0.1$	1.15±0.1	1.2±0.1
RLM12	R<2	1.8±0.1	2.3±0.1	1.0±0.1
KLW12	$2 \leq R < 50$	1.8±0.1	1.7±0.1	1.6±0.1
RLM20	2~3	3.4±0.2	3.5±0.2	2.0±0.2
(NiCu)	4~50	3.4±0.2	1.5±0.2	3.5±0.2
RLM20	1~3	3.4±0.2	3.5±0.2	2.0±0.2
(MnCu)	4~50	3.4±0.2	1.5±0.2	3.5±0.2
	1~3	4.0±0.1	3.1±0.1	1.3±0.1
RLM25	4~50	4.0±0.1	2.1±0.1	4.1±0.1
	0.3~0.75	4.0±0.1	3.1±0.1	1.3±0.1

Unit: mm

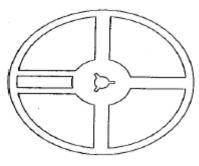


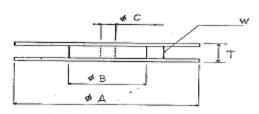
Document NoTRLM-XX0S001AIssued date2022/12/15page10/14


7. Number of Package

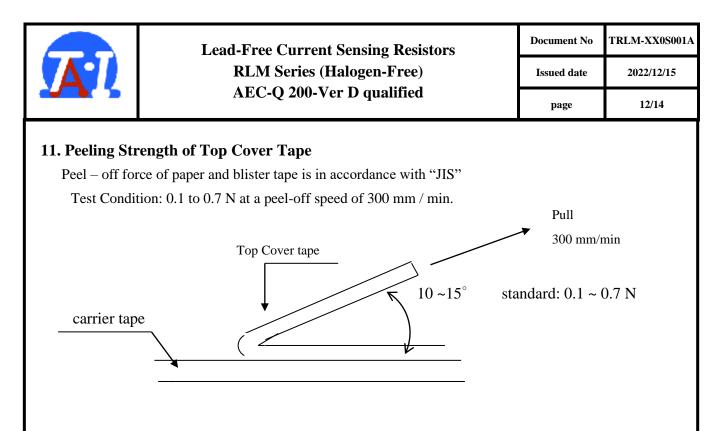

Туре	RLM 10	RLM 12	RLM 20	RLM 25
		3000		2000 (D < 0.20 mO)
Pieces	Pieces 5000	$\frac{(0.5\mathrm{m}\Omega \leq \mathrm{R} < 1\mathrm{m}\Omega)}{5000}$	4000	$(R \le 0.30 \text{ m}\Omega)$ 4000
		$(1m\Omega \leq R \leq 50m\Omega)$		$(0.5 \text{ m}\Omega \leq R \leq 50 \text{ m}\Omega)$

8. Label


9. Packaging

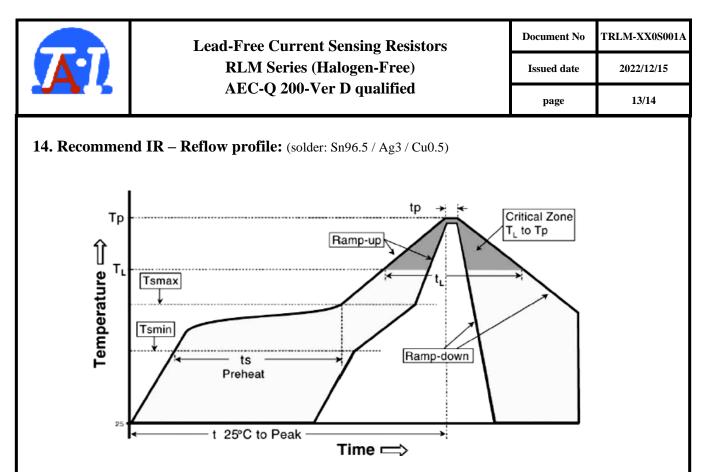


Unit: mm


10. Reel Specification

		$\phi\mathrm{B}$	$\phi \mathrm{C}$	W	1
RLM 10 17	78.0 ±2.0	60.0 ± 1.0	13.0 ± 1.0	9.0 ± 1.0	11.4 ± 1.0
RLM 12 17	78.0 ±2.0	60.0 ± 1.0	13.0 ± 1.0	9.0 ±1.0	11.5±1.0
RLM 20 17	78.0 ±2.0	60.0 ± 1.0	13.0 ± 1.0	13.0 ± 1.0	15.5 ±1.0
RLM 25 18	30(+0/-3)	60.0 ± 1.0	13.0 ± 1.0	13.0 ± 1.0	15.4±2.0

Unit: mm



12. Storage Conditions:

Temperature: 5°C~35°C, Humidity:40%~75% Humidity storage level: Level 1

13. Shelf Life:

2 years from manufacturing date.

Alloyed Re-flow times: 3 times

Remark: To avoid discoloration phenomena of chip on terminal electrodes, please use N2 Re-flow furnace.

Iron Solder:350±10°C, 3+1/-0 sec,1 time

Profile Feature	Lead (Pb)-Free Assembly
Average ramp-up rate (Tsmax to Tp)	3°C / second max
Preheat - Temperature Min (Tsmin) - Temperature Max (Tsmax) - Time (Tsmin to Tsmax) (ts)	150°C 200°C 60 -120 seconds
Time maintained above: - Temperature (TL) - Time (TL)	217°C 60-150 seconds
Peak Temperature (Tp)	260°C
Time within $+0/-5^{\circ}$ C of actual Peak Temperature $(tp)^2$	10 seconds
Ramp-down Rate	6°C/second max.
Time 25°C to Peak Temperature	8mimutes max.

15. ECN

Engineering Change Notice: The customer will be informed with ECN if there is significant modification on the characteristics and materials described in Approval Sheet.

16. Manufacturing Country & City:

TA-I TECHNOLOGY CO., LTD. (Taiwan– Tao Yuan) Tel: (+886) 3-3246169 Fax: (+886) 3-3246167

Associated companies:

- (1)TA-I TECHNOLOGY (SU ZHOU) CO., LTD. (China Su Zhou) Tel :(+86) 512-63457879 Fax: (+86) 512-63457869
- (2) TA-I TECHNOLOGY ELECTRONIC (DONGGUAN) CO., LTD. (China –Dongguan) Tel : (+86) 769-8339-4790~3 Fax : (+86) 769-8339-4794
- (3) FORTUNE TASK RESISTOR FACTORY (China Dongguan) Tel : (+86) 769-8339-4790~3 Fax : (+86) 769-8339-4794
- (4) TAI OHM ELECTRONICS (M) SDN. BHD. (Malaysia –Penang) Tel: (+60)4- 3900480 Fax: (+60)4-3901481
- (5) P.T.TAI ELECTRONIC Indonesia (Indonesia Jakarta) Tel: (+62)-21-89830123 Fax: (+62)-21-89830703